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1. Introduction 
The 2018 implementation stage for the component project P2 consisted in developing a 

software infrastructure for augmented reality in-vehicle systems, in accordance with the 

Activity 1.2. “Developing of a software infrastructure for augmented reality in-vehicle 

systems”, of the development plan of the component projects – a type A2 activity 

(industrial research). The main goal behind the development of the software 

architecture is to offer the support necessary for the design, implementation and 

evaluation of the modules and components planned for the next stages of the 

component project P2. 

The technical and scientific activities in the 2018 project stage consisted in: 

- Designing a software architecture based on event processing called Euphoria ( 

Event-based Unified Platform for HeteRogeneous and Aynchronous 

Interactions), that has a high level of generality, in order to easily integrate 

various types of input and output devices. Accordingly, we prepared the 

technical design documentation for the software architecture. 

- Implementation of the software architecture Euphoria, using industry-standard 

and validated web technologies.  

- Designing and deploying software components that send / receive messages to / 

from the Euphoria server. 

- Evaluating the technical performance of the Euphoria software architecture in 

terms of event processing speed and scalability. Accordingly, we prepared a 

documentation for testing the architecture. 

- Preparation, writing and submitting for evaluation and publication scientific 

papers, on the theme of component project P2. 

The current document represents the summary of the design report of stage 1 – 2018. 

2. Design and implementation of the Euphoria architecture 

This report summarizes the design and implementation details for Euphoria (Event-

based Unified Platform for HeteRogeneous and Aynchronous Interactions), a novel 

software architecture design and implementation that enables prototyping and 

evaluation of flexible, asynchronous interactions between users, personal devices, and 

public installations, systems, and services within smart environments of all kinds, such 

as the augmented reality in-vehicle systems addressed by component project P2. 
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Euphoria implements the production, transmission, processing and consumption of 

events using protocols and web technologies well known in the industrial sector, such as 

HTTP, WebSockets, node.js, JSON, etc. These are natively supported by a wide variety of 

interconnected devices, such as PCs, tablets and smart watches, etc.  

Euphoria is available online at the permanent web address 

http://www.eed.usv.ro/mintviz/resources/Euphoria  

2.1. Design requirements and performance criteria 

We designed the Euphoria architecture by considering a series of performance criteria, 

described in detail in this section. To properly position the Euphoria software 

architecture within the specific literature, we present a comparative analysis with 

respect to existing similar software architectures. 

The Euphoria software architecture was designed to easily integrate devices and 

software apps within an intelligent environment, consisting in a variety of consumers 

and producers. The specific goal of the architecture is to be applied for scenarios 

involving user interactions in smart connected cars. Hence, we adopted several by 

adopting several handling techniques and quality properties; see Figure 1 for a visual 

overview. 

 
Figure 1. Visual overview of the two handling techniques (H 1 and H 2 ), the four quality 

properties (Q1 , Q2 , Q3 , and Q4), and the four contextual properties (C1 , C2 , C3 , and 

C4) adopted for the design of the Euphoria software architecture. 

 

http://www.eed.usv.ro/mintviz/resources/Euphoria
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2.2. Designing the Euphoria software architecture 

This section presents the model of the software architecture Euphoria. Figure 2 

illustrated the design of Euphoria having as main components: producers, transmitters, 

processing engine, receivers and consumers, according to the model of event-based 

architectures [19]. We designed Euphoria with a strong separation between its 

functional blocks (Q2) and with a reduced size of its adaptation layers (Q1). 

In accordance with de design principles H1 [18, 19, 20], the information about the 

events triggered by the producers are collected, packaged in messages and exposed by 

the emitters to the next layer. Subsequently, the messages are processed and shipped 

by the processing engine to the receivers and consumers, who will interpret those 

messages according to their internal logic and take appropriate action within the 

intelligent environment.  

For example, an event detected by a smart watch worn by the driver of a smart 

connected car will lead to the selection of an element on the screen. A message sent 

through Euphoria consists in a header with metadata (e.g., the name of the device, the 

IP address, the name of the event) and a message body, which contains the data that is 

relevant for the event. Figure 2 illustrates four examples of messages of various 

complexity, produced by a bracelet, a smartphone, and two motion detection sensors. 

The producer represents the software component that generates events: a (slight) 

alteration of its state is notified to the software architecture as an event. Producers are 

instantiated by the input devices, (for example, motion sensors, intelligent mobile 

devices, portable devices) or software services (for example, a gesture command that 

has been detected for a specific user by a gesture recognition service on the web). 

For the producers that are instances of input devices, the events refer to any physical 

alteration of the states of these devices that is relevant for the application, such as 

pressing a button or a change in the wrist orientation detected by a smart watch. 

Similarly, software events can be produced in relation to changes in the state of a given 

application. 

Software events prove to be useful for debugging, simulation, or integration of the 

complex logic provided by third-party libraries and services, such as those available on 

the web. Another characteristic of event-based architectures is that distinct layers do 

not know the operating details of the other layers of the architecture (Q2). 
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Figure 2. Examples of JSON messages of various complexity: a message containing 

acceleration and orientation data collected from a Myo armband (top left); touch input 

data reported by a smartphone (top right); motion data tracked by a Vicon system 

(bottom left); and a message containing a Microsoft Kinect skeleton (bottom right). 

For example, it is not important for producers to know which components will process 

and consume the events that they produce. This feature facilitates the integration of 

devices and new software applications in Euphoria, including future ones, such as 

mobile augmented reality devices [61], without any changes to the main components of 

the Euphoria architecture. 

 Once an event has been produced, the event triggers the instantiation of a message 

(see dataflows ❶ and ❷ in Figure 3), which travels to the next levels of the 

architecture. In the case the event was produced by an input device, the Emitter is built 

around that device’s software development kit (SDK) that delivers the required software 

components to collect the specific parameters of the event (e.g., the properties of a 

touch on a touchscreen, the orientation of a motion-sensing device, etc.). 
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Figure 3.  The layered architecture of Euphoria, an event-based software architecture 

for designing interactions in smart environments. Euphoria consists of event producers, 

emitters, a processing engine, and event receivers and consumers. Numbers ❶ to ❼ 

represent data flows that are discussed in the text. 

The Emitter collects event data and packs them in the form of messages that are 

delivered to the higher layers of the architecture. A message consists of a header with 

metadata (i.e., the event type and the identification of the producer) and a message 

body with details about the change of state (e.g., the button that was pressed, the type 

of gesture performed by the user, new position coordinates from a motion sensor, etc.). 

While the header of the message has a fixed structure, its body depends on the type of 

device and the event that was produced. 

In most cases, the Message-Expose-Layer (see Figure 3) needs to be implemented in 

native code, although some SDKs or software applications may already offer higher-level 

interfacing options for a given input device. 
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Emitters (producers) and receivers (consumers) represent the interface between the 

Euphoria kernel and the wide range of devices and software apps that we wish to 

connect. In order to send or receive a message, a software conversion is needed, 

between a model for the producer/consumer and a generic model, specific to Euphoria. 

The use of robust and optimal technologies, like HTTP or JSON, leads to an adaptive 

layer as efficient as possible, while maintaining flexibility and interoperability. In fact, 

emitters and receivers are the only two levels of the architecture that need to be 

implemented by the developers.  

Since the emitter component is necessary to integrate each input device in the apps that 

will reside in the smart environment, we designed it in a general and reusable manner, 

according to quality properties Q3 and Q4. Basically, the emitter consists only of the 

code needed to encapsulate the specific properties in a standard JSON message and to 

send this message through an HTTP request. Feeding our architecture with an event is 

just as simple as an HTTP request to a URL: the query string represents the message of 

the event. 

The processing engine is the essential component of the software architecture Euphoria. 

Its main responsibility is to receive messages from Emitters (see dataflow ❸ in Figure 

3) and to dispatch them to the appropriate Consumers that have registered to receive 

those specific types of events. In our implementation, the Processing-Engine is run by a 

node.js web server. The event messages collected by the Publication-Center are 

unpacked by the Message-Processing-Service; see Figure 3.  

Before receiving a notification, a consumer must register, following a standard protocol. 

As a part of this protocol, the consumer must specify the type of the events it will be 

able to receive, as well as the corresponding producers. Once the registration is 

finalized, the processing engine will automatically notify the consumer with respect to 

those events that meet the requirements agreed upon during the registration. 

To perform both registration and notification, the Processing-Engine and the Consumer 

rely on WebSockets mechanisms, a set of communication protocols that enable full-

duplex, TCP-based sessions between a client and a server [62, 63].  

The Message-Processing-Service (Figure 3) routes the messages to the appropriate 

Consumers and converts the data in the JSON (JavaScript Object Notation) 

interchangeable format (our quality property Q4). The processing engine does not know 
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the internal structure of producers or consumers. This abstraction supports both 

scalability (quality property Q1) and the ability to integrate heterogeneous input devices 

(Q4).  

The receiver is any third-party software application that requests events from the smart 

environment to use them for its own business logic. The receiver establishes an 

WebSockets connection with the processing engine, by means of the Message-Access-

Layer (see dataflows ❹ and ❺ in Figure 3).  

In addition to the filter list of the types of events and associated Producers, the Receiver 

can also specify other optional parameters, such as a minimum time interval between 

receiving two consecutive events of the same type to prevent intractable accumulations 

of events to handle at once.  

This practice also serves to prevent the overloading of the network with unnecessary or 

redundant traffic. One important goal of Euphoria is to maintain a very thin layer 

between a Receiver and the Processing-Engine so that any existing software application 

can integrate with Euphoria with a minimum coding effort (quality properties Q1 and 

Q2). To this end, we decided to implement the Message-Access-Layer using the 

industry-mature technology of WebSockets, enabling thus real-time and asynchronous 

data transfer (see handling technique H1) between the Processing-Engine and the 

Receiver. 

Once received, the message triggers a specific action on the Consumer which is the fifth 

layer of the architecture (see dataflows ❻ and ❼ in Figure 3). This tier consists in 

output devices and software applications that users interact with directly. It is the 

output interface between Euphoria and the outer environment. The implementation 

details of Consumers are locked within the Receiver layer to make the Engine as 

decoupled as possible. 

3. Design and deployment of software components that 

communicate with the Euphoria architecture 
The event producer and consumer apps, GenericProducer and GenericConsumer, were 

implemented as prototypes and tested in this stage of the project. Using these 

prototypes, the driver may choose to receive messages that contain information 

regarding the weather. Also, he may choose to receive or block notification received 
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from third party applications, such as Facebook, Gmail, WhatsApp, or any other 

notification automatically received by his mobile device (e.g. automatic updates for 

installed software). This way, the driver is notified only with information that is 

important to him, his attention being distracted as little as possible from his driving 

activity.  

The GenericProducer app includes, at this moment, 3 types of content producers: 

- a generic content producer, entitled GenericComponent. It is customizable, and it 

delivers customizable notifications / messages at dynamically established time intervals. 

This producer has proven useful in testing the application in terms of management of 

the time and platform resources. 

- a content producer called NotificationComponent, which receives all notifications from 

the mobile device as soon as they appear. It packs them in a unified manner and sends 

them as a JSON-like message to the Euphoria server. 

- a content producer entitled WeatherComponent, which generates messages containing 

information about the weather at the location of the mobile device. This component 

reads the location of the mobile device of the driver; after that, it makes a connection to 

a weather service available online. Finally, the component produces regular 

notifications, at customizable time intervals, with information about the weather at the 

current location. 

The GenericConsumer app receives JSON objects from the Euphoria architecture. It 

displays information about them on the consumer’s screen. Now, the purpose of display 

was to test the reliability of such an approach. In order to display the information from 

the producer, we first took into account the visibility of the information displayed under 

different environmental conditions. Another important goal was reducing to a minimum 

the disturbance of the attention of the traffic participants in general, and of the driver, 

in particular, brought on by displaying the information. 

Each app was designed using the event driven methodology, based on the broadcasting 

version of the design pattern Observer [66]. We applied this style in order to obtain 

independent components that asynchronously process the data. 
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Each event producer/consumer was encapsulated in a package that was designed using 

the object-oriented methodology, using UML (Unified Modeling Language)1 [64]:  

o from the point of view of the interactions between objects – we designed a UML 

sequence diagram 

o from a static (structural) point of view – we designed a UML class diagram that 

depicts the classes and interfaces in each package, and the relations among them. 

In designing these UML diagrams, we applied general GRASP software design patterns, 

such as Information Expert, Creator, Low Coupling, High Cohesion, Pure Fabrication, 

Indirection [67]. These design patterns provide a guarantee that we have obtained a 

quality architecture that applies basic design principles, such as poor coupling of classes 

or high-class cohesion. 
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